"嗯?"
蒋梦洁愣了一下。
"把这个等边三角形的面积,用一个变量表示出来,然后求出它的最大值。"
陶景行看着她,目光里带着一种纯粹的信任。
"你的几何首觉,比我好。"
蒋梦洁的心跳加快了。
她接过那支还带着陶景行体温的笔,深吸了一口气。
大脑中,那个三维的动态几何模型,再次浮现。
这一次,她不再需要去寻找那个不确定的峰值。
她需要做的,是将这个己经被证明了的"最优解",用最简洁的方式,表达出来。
"用极坐标。"
蒋梦洁很快就找到了思路。
"心形线的参数方程,在极坐标下有最简单的形式。"
"我们可以设等边三角形的一个顶点在对称轴上,利用对称性,可以很快地表示出另外两个顶点的坐标。"
她一边说,一边在纸上画出了一个新的极坐标系。
她的思路,如同天马行空,总能从最不可思议的角度切入。
而陶景行,则像一个最可靠的守护者。
每当蒋梦洁提出一个充满灵感的构想,他总能立刻跟上,并用最严谨的逻辑,去补全其中可能存在的漏洞,或者给出更优的计算路径。
"这里,用三角函数的和差化积公式,会更快。"
"这个角度,可以用二倍角公式展开。"
"注意定义域。"
一个如风,一个如山。
一个负责天马行空的想象。
一个负责脚踏实地的验证。
两人的思维,在这一刻,达到了高度同频。
他们甚至不需要过多的语言交流。
一个眼神,一个手势,对方就能瞬间心领神会。
时间在这一刻被无限拉长了。
他们的世界里,只剩下眼前的这道题,和身边这个能与自己并肩作战的同伴。